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Abstract

Symbolic knowledge can provide crucial inductive
bias for training neural models, especially in low
data regimes. A successful strategy for incorporat-
ing such knowledge involves relaxing logical state-
ments into sub-differentiable losses for optimiza-
tion. In this paper, we study the question of how
best to relax logical expressions that represent la-
beled examples and knowledge about a problem;
we focus on sub-differentiable t-norm relaxations
of logic. We present theoretical and empirical cri-
teria for characterizing which relaxation would per-
form best in various scenarios. In our theoretical
study driven by the goal of preserving tautologies,
the Łukasiewicz t-norm performs best. However,
in our empirical analysis on the text chunking and
digit recognition tasks, the product t-norm achieves
best predictive performance. We analyze this ap-
parent discrepancy, and conclude with a list of best
practices for defining loss functions via logic.

1 Introduction
Neural networks are remarkably effective across many do-
mains and tasks; but their usefulness is limited by their data
hungriness. A promising direction towards alleviating this
concern involves augmenting learning with rules written in
first-order logic [Rocktäschel et al., 2015; Li and Srikumar,
2019; Li et al., 2019; Fischer et al., 2019, inter alia]. To
make rules amenable with gradient-based learning, this ap-
proach calls for relaxing the logical operators to define sub-
differentiable loss terms. A systematic method to perform
this relaxation uses a well-studied family of binary operators,
namely triangular norms or t-norms [Klement et al., 2013].
Different t-norms define different [0, 1]-valued interpretations
of the Boolean operators.

There are infinitely many such t-norm logics, but the most
commonly used ones are: Product [Rocktäschel et al., 2015;
Li et al., 2019; Asai and Hajishirzi, 2020], Gödel [Minervini
et al., 2017] and Łukasiewicz [Bach et al., 2017]. While the
usefulness of such relaxations is well established, the ques-
tions of how they compare against each other, and even how
such a comparison should be defined remain open.

This paper is a first step towards answering these impor-
tant questions by analyzing the three t-norm relaxations and
their variants. To do so, we define the criteria for quantifying
the goodness of a t-norm based relaxation. On the theoreti-
cal side, we rank logic relaxations by their consistency, i.e.,
their ability to preserve the truth of tautologies. On the em-
pirical side, we use a principled approach to construct loss
functions using t-norms that subsume traditional loss func-
tions like cross-entropy, and study how well different relax-
ations compare with standard gradient-based learning. We re-
port the results of experiments on two tasks: jointly recogniz-
ing digits and predicting the results of arithmetic operators,
and text chunking. Both the theoretical and empirical criteria
concur in the recommendation that a variant of the Product
t-norm (R-Product) is most suitable for introducing logical
rules into neural networks.

In summary, the main contributions of this work are:
• We define theoretical and empirical properties that any

relaxation of logic should have to be useful for learning.
• We define the consistency of relaxations to rank them in

terms of their ability to preserve tautologies.
• We present empirical comparisons of logic relaxations

on two tasks where labeled examples and declaratively
stated knowledge together inform neural models.

2 Problem Statement and Notation
Several recent efforts have shown the usefulness of declara-
tive knowledge to guide neural network learning towards im-
proving model quality. While different approaches exist for
incorporating such rules into neural models [Xu et al., 2018,
for example], a prominent strategy involves relaxing logic to
the real regime using the well-studied t-norm relaxations.

Triangular norms (t-norms) arose in the context of prob-
abilistic metric spaces [Menger, 1942], and for our pur-
poses, represent a relaxation of the Boolean conjunction
which agrees with the definition of conjunctions for {0, 1}-
inputs. Given such a relaxation and a relaxation of ¬X as
1 − x, we have two axiomatic approaches for defining im-
plications. The first (called S-logics) treats implications as
disjunctions (i.e., X → Y = ¬X ∨ Y ), while the second
(called R-logics) defines implications axiomatically. We re-
fer the reader to Klement et al. [2013] for a detailed treatment
of t-norms.



Table 1 shows the set of t-norms we consider here;
these have been used in recent literature to inject knowl-
edge into neural networks. However, despite their increas-
ing prevalence, there is no consensus on which t-norm to
employ. A survey of recent papers reveals the use of S-
Product [Rocktäschel et al., 2015], R-Product [Li et al.,
2019; Asai and Hajishirzi, 2020], Łukasiewicz [Bach et al.,
2017], S-Gödel [Minervini et al., 2017] and even a mixture
of the S-Gödel andR-Product [Li et al., 2020] t-norms.

How do these relaxations of logic compare against each
other? In this work, we answer this question from both theo-
retical and empirical perspectives.

2.1 Learning From Logic: The Setup
To compare the different relaxations of logic on an even foot-
ing, let us first see a general recipe for converting logic rules
to loss functions for a given relaxation1. We will use the task
of recognizing handwritten digits as a running example.

Given a labeling task, we can represent the fact that the la-
bel for an instance x is y as a predicate, say Label(x, y).
In our running example, we could define a predicate
Digit(x, y) to denote that an image x represents the digit y.
We could also define a predicate Sum(x1, x2, y) to denote the
fact that the digits in two images x1 and x2 add up to the digit
y (mod10). From this perspective, we can treat classifiers as
predicting probabilities that the predicates hold.

To train such classifiers, we typically have a training set D
of labeled examples (x, y). In our notation, each such exam-
ple can be represented as the predicate Label(x, y) and the
training set is a conjunction of such predicates∧

(x,y)∈D

Label(x, y) (1)

Sometimes, instead of a labeled dataset, we may have a
constraint written in logic. In our running example, from the
definition of the Digit and Sum predicates, we know that

∀x1, x2,
∧
y1,y2

Digit (x1, y1) ∧ Digit (x2, y2)→

Sum (x1, x2, (y1 + y2) mod 10) (2)

Note that such a constraint need not depend on labeled ex-
amples, and should hold irrespective of what labels the exam-
ples should be assigned. In general, given a large unlabeled
set of examples denoted by x ∈ U , we can write constraints∧

x∈U
C (x) (3)

These constraints may be composite formulas constructed
with predicates as shown in our running example above.

From this standpoint, we can envision the goal of learning
as that of ensuring that the formulas representing labeled ex-
amples ( equation 1) and constraints ( equation 3) hold. Since
we are treating classifiers as predicting probabilities that the
atomic predicates hold, we can equivalently state the learning
problem as that of finding model parameters that maximize

1The setup described here is implicitly present in Rocktäschel et
al. [2015], Li et al. [2019], and others.

S-Gödel R-Product Łukasiewicz

∧ min(x, y) x · y max(0, x+ y − 1)
¬ 1− x 1− x 1− x
∨ max(x, y) x+ y − x · y min(1, x+ y)

→ max(1− x, y)
{

1 if x ≤ y
y
x otherwise min(1, 1− x+ y)

Table 1: T-norm relaxations studied in this work. Here, the letters x
and y denote the relaxed truth values of the arguments of the formu-
las. In the implication definitions, x and y denote the antecedent and
the consequent respectively. The table does not show S-Product: it
agrees with R-Product for all the connectives except the implica-
tion, defined as 1 − x + x · y. We are defining R-Product using its
SBL∼ extension with involutive negation (See Esteva et al. [2000]).

the value of a relaxation of the conjunction of the formulas
representing the data and constraints. In other words, we can
use logic to define loss functions.

In this declarative learning setting, we have the choice of
using any models (e.g., CNNs) for our predicates, and any
relaxation of logic. If we only have labeled examples, and
we use one of the Product relaxations, we recover the widely
used cross-entropy loss [Li et al., 2019; Giannini et al., 2019].
Notation. We use upper case letters (e.g., P, Digit) to rep-
resent Booleans, and lower cased letters (e.g., p, digit) to
represent their relaxations. In some places, for clarity, we use
square brackets to denote the relaxation of a Boolean formula
A (i.e., [A]=a).

3 Validity of Relaxed Logic
In this section, we propose three criteria that a logic relaxation
should satisfy to be useful for learning.
Consistency. The language of logic can declaratively intro-
duce domain knowledge, invariants, or even reasoning skills
into neural networks. However, to admit reasoning, tautolo-
gies should always hold. That is, the truth value of any tau-
tology should be 1 irrespective of the value of its constituent
atomic predicates. Equivalently, the integral of the relaxation
of a tautology over the domain of its atomic predicates should
be 1. We can formalize this intuition.
Definition 1. Let T be a tautology in predicate logic formed
with a set of atomic predicates T , and let L be a logic relax-
ation. The consistency of T in L, denoted as κL(T), is defined
as

κL(T) =

∫ 1

0

[T]dT (4)

If the consistency κL(T) = 1, we will say that the tautology
T is consistent under the relaxation L.
Self-consistency. Every Boolean statement implies itself.
That is, the statement P ↔ P is a tautology for any P. This
observation gives us the definition of self-consistency of a for-
mula under a given relaxation.
Definition 2. Let P be any Boolean formula in predicate logic
with a set of atomic predicates P , and let L be a logic relax-
ation. The self-consistency of P in the logic L, denoted as



κLS(P), is defined as

κLS(P) = κL(P↔ P) =
∫ 1

0

[P↔ P]dP (5)

If κLS(P) 6= 1 we will say that formula P is not self-
consistent under a relaxation L. Since we consider a dataset
to be a conjunction of facts ( equation 1), the self-consistency
of large conjunctions allows us to judge whether a dataset im-
plies itself under a relaxation.
Sub-differentiability. Since our eventual goal is to relax
declaratively stated knowledge to train neural networks, the
relaxations should admit training via backpropagation. As
a result, the functions defining the relaxed logical operators
should at least be sub-differentiable.

In sum, we consider a logic relaxation to be valid if the
following properties hold:
(P1) It must be sub-differentiable over the interval [0, 1].
(P2) It must be consistent for any tautology.
(P3) It must be self-consistent for any Boolean formula.
All the relaxations we study here satisfy property P12. Even
among sub-differentiable relaxations, some may be easier
than others to learn using gradient-based approaches. We
consider this empirical question in §5. Properties P2 and P3
do not always hold, and we will prefer relaxations that have
higher values of consistency and self-consistency.

4 Truth Preservation of Relaxations
In this section, we will assess the relaxations from Table 1
with respect to properties P2 and P3.

4.1 Consistency
Property P2 expects every tautology to be consistent under a
valid logic relaxation. Since predicate logic admits infinitely
many tautologies, we will use a representative set of tautolo-
gies for our evaluation. This set contains the Axiom Schemata
of the Hilbert proof system for predicate logic3, the primi-
tive propositions, and a set of elementary properties defined
by Russell and Whitehead [1910].

Table 2 shows the consistency for each tautology for our t-
norm relaxations. Comparing results across the columns, we
see that Łukasiewicz and R-Product t-norm logics preserve
truth the most across our representative set. In general, we
findR logics to be better at preserving truth than S logics.
Example 1. Consistency of the tautology A → A using S-
Product.

[A→ A] = 1− a+ a2

By the definition of consistency ( equation 4), we have

κS-Prod(A→ A) =
∫ 1

0

1− a+ a2 da =
5

6
≈ 0.83

2This is not always the case. In R-Gödel logics, for instance,
implications are not sub-differentiable: [X→ Y], takes value 1 if y ≥
x, and y otherwise.

3This choice is motivated because, loosely speaking, every tau-
tology is generated using the Axiom Schemata with the modus po-
nens proof rule.

Tautologies S-Prod S-Gödel ŁukaR-Prod

Axiom Schemata
P→ (Q→ P) 0.92 0.79 1 1
(P→ (Q→ R))→ ((P→ Q)→ (P→ R)) 0.88 0.75 0.96 0.93
(¬P→ ¬Q)→ (Q→ P) 0.86 0.75 1 0.88

Primitive Propositions
(P ∨ P)→ P 0.75 0.75 0.75 0.69
Q→ (P ∨ Q) 0.92 0.79 1 1
(P ∨ Q)→ (Q ∨ P) 0.86 0.75 1 1
(P ∨ (Q ∨ R))→ (Q ∨ (P ∨ R)) 0.91 0.78 1 1
(Q→ R)→ ((P ∨ Q)→ (P ∨ R)) 0.90 0.76 1 1

Law of excluded middle
P ∨ ¬P 0.83 0.75 1 0.83

Law of contradiction
¬(P ∧ ¬P) 0.83 0.75 1 0.83

Law of double negation
P↔ ¬(¬P) 0.70 0.75 1 1

Principles of transposition
(P↔ Q)↔ (¬P↔ ¬Q) 0.61 0.67 1 0.59

Laws of tautology
P↔ (P ∧ P) 0.69 0.75 0.75 0.50
P↔ (P ∨ P) 0.69 0.75 0.75 0.69

De Morgan’s Laws
(P ∧ Q)↔ ¬(¬P ∨ ¬Q) 0.75 0.75 1 1

¬(P ∧ Q)↔ ¬(¬P ∨ ¬Q) 0.75 0.75 1 1

Table 2: Consistencies of a (subset) of representative set of tau-
tologies under different logic relaxations. We see here that the
R-Product and Łukasiewicz relaxations are generally more consis-
tent, suggesting that they are preferable to the other two relaxations.
Other tautologies we examined show the same trends.

4.2 Self-consistency
The validity property P3 states that every well-formed
Boolean formula should be self-consistent for a relaxation of
the logic to be valid. It turns out that the definition of impli-
cations for any R logic (including Łukasiewicz) guarantees
the self-consistency of every formula.

Proposition 1. Every formula is self-consistent under anyR-
logic relaxation.

This follows directly from the definition of the t-norm and
the properties of residua.

However, the same is not true for S-logics. For example,
for the conjunction P = A ∧ B, the self-consistency under the
Gödel relaxation κS-Gödel

S (P) = 0.75 and under the Product
relaxation, we have κS-Prod

S (P) ≈ 0.74. These results suggest
that the R-Product and Łukasiewicz relaxations are prefer-
able from the perspective of property P3 as well.

Intriguingly, we find that the S-Product logic is eventually
self-consistent for large monotone conjunctions.

Proposition 2. LetA =
∧n
i=1Ai be a conjunction consisting

of n atomic predicates A1, A2, . . . , An. The self-consistency
of A is given by κS-Prod

S (A) = 1− 2
2n + 3

3n −
2
4n + 1

5n .

Proof. By induction over the size of the conjunction n.

We see that, as n→∞, the self-consistency of a monotone
conjunction approaches 1. In other words, large conjunc-
tions (e.g., representing large datasets) are essentially self-
consistent under the S-Product relaxation.



5 Empirical Comparisons of Relaxed Logic
In this section, we empirically study the differences between
the different logic relaxations using two tasks: recognizing
digits and arithmetic operations, and text chunking. In both
tasks, we set up the learning problem in terms of logic, and
compare models learned via different logic relaxations.4

5.1 Recognizing Digits and Arithmetic Operations
These experiments build upon our running example from §2.
We seek to categorize handwritten digits; i.e., we learn the
predicate Digit. In addition, we also seek to predict the sum
and product (modulo 10) of two handwritten digit images.
These correspond to the predicate Sum we have seen, and a
new analogous predicate Product.

We use the popular MNIST dataset [LeCun, 1998] for
our experiments, but only to supervise the Digit classifier.
Rather than directly supervising the other two classifiers, we
use coherence constraints over unlabeled image pairs that
connect them to the Digit model. The constraint for the Sum
classifier is shown in equation 2, and the one for the Product
classifier is similarly defined.

We set up the learning problem as defined in §2 and com-
pare performance across different relaxations.

Data and Setup
We partition the 60k MNIST training images into TRAIN and
DEV sets, with 50k and 10k images respectively. To super-
vise the Digit model, we sample 1k, 5k and 25k labeled im-
ages from TRAIN to form three DIGIT sets. The coherence
constraints are grounded in 5k unlabeled image pairs consist-
ing of images from TRAIN that are not in any DIGIT set,
giving us the PAIR dataset.

For evaluating the Digit model, we use the original 10k
TEST examples from MNIST. For the development and eval-
uation of the operator models, we sample random image pairs
from DEV and TEST to create the PairDEV and PairTEST
sets respectively. The ground truth Sum and Product labels
for these image pairs can be computed by the sum and prod-
uct modulo 10 of the image labels.

We use CNNs as the Digit, Sum and Productmodels. For
the operator models, we concatenated the two images to get
CNN inputs. To jointly train these models using the labeled
DIGIT data and the unlabeled PAIR datasets, we define a loss
function by relaxing the conjunction of Digit predicates over
the DIGIT examples and the coherence constraints over the
PAIR examples. That is, learning requires minimizing:

(6)

−

 ∧
(x,y)∈D

Digit(x, y)


∧

( ∧
PAIR

Sum Coherence

)

∧

( ∧
PAIR

Product Coherence

)
4Our PyTorch [Paszke et al., 2019] code is archived at https://

github.com/utahnlp/neural-logic

1000 5000 25000

S-Gödel 95.0 (0.3) 97.4 (0.1) 97.7 (0.1)

S-Product 95.1 (0.1) 98.2 (0.0) 99.0 (0.0)

R-Product 96.3 (0.1) 98.4 (0.1) 99.2 (0.0)

Łukasiewicz 95.8 (0.1) 98.0 (0.1) 99.1 (0.0)

Table 3: Digit accuracies (and standard deviations) from jointly
training Digit on DIGIT sizes 1k, 5k, 25k and operators (Sum,Prod)
on PAIR size 5k.

1000 5000 25000

S-Gödel 87.3 (0.5) 91.1 (0.1) 91.5 (0.0)

S-Product 76.9 (0.8) 88.6 (0.6) 90.1 (0.0)

R-Product 88.0 (0.3) 90.8 (0.3) 91.8 (0.0)

Łukasiewicz 75.9 (3.1) 84.5 (2.8) 82.3 (0.3)

Table 4: Average of Sum and Product accuracies (and standard de-
viations) from jointly training Digit on DIGIT sizes 1k, 5k, 25k
and operators on PAIR size 5k.

In practice, we found that it is important to use a hyper-
parameter λ that weights the relaxed coherence constraints in
the loss. We used the DEV sets for hyperparameter tuning
using the average of the accuracy of the Digit classifier and
the coherences of the other two.

Results
Table 3 reports accuracies for the Digit classifier trained
with different sizes of DIGIT, and the coherence constraints
instantiated over the 5k PAIR examples. We observe that the
R-Prod relaxation dominates across all settings, with higher
gains when there are fewer labeled examples. (The bold en-
tries in this and other tables are statistically significantly bet-
ter than the other relaxations at p < 0.05. The accuracies
are averages from three runs with different seeds along with
the standard deviation.) Table 4 reports the average of Sum,
and Prod accuracies for the same settings, and Table 5 shows
the fraction of PairTEST examples where the coherence con-
straints are satisfied. From these results, we see that the R-
Product and S-Gödel relaxations offer the best accuracies.

Interestingly, Łukasiewicz is the least accurate relaxation.
However, the losses compiled using Łukasiewicz and S-
Gödel t-norms were unstable, and the results shown here were
achieved with additional assumptions. We defer this technical
discussion to §5.3, and conclude that the stability and accu-
racy of the R-Product relaxation suggest that it is the most
suitable relaxation for this class of problems.

Joint Learning vs. Pipelines
In the coherence constraints in equation 2, if we knew both
the Digit terms, we can deterministically compute the value
of Sum. This suggests a pipeline strategy for training, where
we can train the Digit classifier alone, and use it to assign
(noisy) labels to the unlabeled PAIR data. Subsequently, we
can train the Sum and Product models independently. How
does the joint training strategy compare to this pipeline?

Importantly, we should note that both the joint and the
pipeline strategies instantiate the declarative learning ap-

https://github.com/utahnlp/neural-logic
https://github.com/utahnlp/neural-logic


1000 5000 25000

S-Gödel 86.4 (0.6) 91.4 (0.1) 91.9 (0.1)

S-Product 79.0 (0.7) 89.3 (0.5) 90.3 (0.0)

R-Product 89.1 (0.3) 91.5 (0.4) 92.1 (0.1)

Łukasiewicz 77.4 (3.0) 85.4 (2.7) 82.6 (0.2)

Table 5: Average of Sum and Prod Coherence accuracies (and stan-
dard deviations) from jointly training Digit on DIGIT sizes 1k, 5k,
25k and operators on PAIR size 5k.

1000 5000 25000

S-Gödel 95.2 97.6 97.59
R/S-Product 96.7 98.4 99.12
Łukasiewicz 96.5 98.5 98.76

Table 6: Pipelined Digit accuracies trained on DIGIT sizes 1k, 5k,
25k. Standard deviation is 0.0 for every entry.

proach outlined in §2 where logical facts are compiled into
an optimization learning problem via the logic relaxations.
However, in the pipeline, the coherence constraints are not
explicitly involved in the loss, because the noisy labels al-
ready satisfy them. Since conjunctions are identical for the S
andR relaxations, they give the same results.

Tables 6, 7, and 8 show the results of these pipelined exper-
iments. We observe the same trends as in the joint learning
experiments: R-Product achieves the highest performance.

Comparing the joint learning and the pipeline results, we
observe that the latter are slightly better across relaxations
and data settings. As mentioned above, however, pipelining is
only viable here because of the special form of our constraint.

5.2 Text Chunking
Our second set of experiments use the NLP task of text
chunking using the CoNLL 2000 dataset [Sang and Buchholz,
2000]. This task illustrates how relaxed logic can be used to
derive loss functions for sequential inputs and outputs.

Text chunking is a sequence tagging problem, where each
word of a sentence is assigned a phrase type. For example, in
the sentence ‘John is playing in the park.’, the word ‘John’ is
labeled as B-NP, indicating that it starts a noun phrase (NP).
We use the standard BIO labeling scheme: B-X indicates the
start of a new phrase labeled X, I-X indicates the continuation
of a phrase labeled X, and O marks words that do not belong
to any of the predefined phrase types.

In the case of text chunking, the input x is a sequence of
words and correspondingly, output y is a sequence of labels
(phrase types). Consequently, each position in the sequence
is associated with a predicate. For an input x with n words,
we have n predicates, one per word.

Using our notation from §2 we define the predicate,
Tag(xi, yi), to denote that ith word in input x is assigned
the label yi. For our preceding example, John being assigned
the label B-NP corresponds to the predicate Tag(John, B-NP).

Constraints
For each position in the sequence, we have constraints defin-
ing pairwise label dependencies. If a word in a sentence has

1000 5000 25000

S-Gödel 88.3 (0.3) 90.9 (0.1) 91.3 (0.1)

R/S-Product 89.7 (0.1) 92.2 (0.0) 93.0 (0.0)

Łukasiewicz 83.0 (1.9) 86.9 (3.6) 88.6 (0.4)

Table 7: Average of Pipelined Sum and Product accuracies (and
standard deviations) trained on PAIR size 5k (noisy) labeled with
Digit model trained on DIGIT sizes 1k, 5k, 25k.

1000 5000 25000

S-Gödel 86.7 (0.3) 90.6 (0.1) 91.3 (0.0)

R/S-Product 89.9 (0.2) 92.5 (0.0) 92.8 (0.0)

Łukasiewicz 83.5 (1.8) 87.2 (3.5) 88.7 (0.4)

Table 8: Average of Pipelined Sum and Prod Coherence accuracies
(and standard deviations) trained on PAIR size 5k (noisy) labeled
with Digit model trained on DIGIT sizes 1k, 5k, 25k.

a B/I label of a certain phrase type, then the next word cannot
have a I label of a different phrase type. For example, we have

Ci,1: ∀i, Tag(xi, B-NP)→ ¬Tag(xi+1, I-VP)
Ci,2: ∀i, Tag(xi, I-NP)→ ¬Tag(xi+1, I-VP)

In general, given a labeled dataset D, and a set C of k con-
straints for each word position, we can write the conjunction
of all constraints as:

∧
x,y∈D

{∧
i

(
Tag(xi, yi)

∧
k

Ci,k

)}
(7)

We can now use this Boolean formula to state the goal of
learning as finding the model parameters of a neural network
that maximizes the value of the relaxation derived for each
t-norm. We used a bidirectional LSTM over GloVe embed-
dings [Pennington et al., 2014] to instantiate Tag.

Experiments and Results
We compare the four t-norms on two settings. First, in
purely supervised learning, the model only learns from la-
beled examples. Second, we augment the labeled dataset
with the constraints described above to study the effective-
ness of incorporating simple constraints on outputs. For both
of these settings, we also study the models in a low data
regime with training data restricted to 10%. Following previ-
ous work [Sang and Buchholz, 2000], we use the F1 score as
our evaluation metric.

We report performances of the models trained with differ-
ent t-norms in Table 9. We observe that for supervised learn-
ing (top rows), both variants of product t-norm outperform
the other two t-norms by a significant margin. We again ob-
serve that for purely supervised learning, bothR-Product and
S-Product produce identical results since no implication con-
straints are used. Further, S-Gödel performs the worst among
the four t-norms. Note that this observation is consistent with
our analysis from Table 2 where S-Gödel was found to be
least consistent with tautologies.

Let us now look at the results of augmenting supervised
learning with simple output constraints (Table 9, bottom



% Train S-Gödel S-Prod. R-Prod. Łukasiewicz

10% 70.29 79.46 79.46 76.50
100% 85.33 89.18 89.18 87.25

10% + C 70.81 79.71 80.14 76.80
100% + C 85.49 89.19 89.75 87.59

Table 9: Results for Text Chunking. F1 scores on test set of CoNLL
2000 dataset. Product t-norms outperform other t-norms for purely
supervised setting (top rows). R-Product performs best among all
t-norms when constraints are augmented into the neural models (bot-
tom rows). Rows with + C include constraints.

rows). First, we observe that incorporating simple constraints
into neural models, using the framework discussed in this
work, can indeed improve their performance in all cases. Par-
ticularly, this improvement is more pronounced in low data
regimes, since models need to rely more on external back-
ground knowledge when training data is small.

We also find that both variants of product t-norms out-
perform S-Gödel and Łukasiewicz. However, in both data
regimes,R-Product outperforms S-Product when incorporat-
ing constraints into the neural model. We observe that these
results are consistent with the ones obtained in §5.1.

5.3 Theory vs. Experiments
From our analysis of t-norms in §4, we found that
Łukasiewicz andR-Product are the most preferable. Empiri-
cally,R-Product outperforms the other relaxations.

The consistency analysis suggests that since S-Gödel is
least consistent, we should also expect S-Gödel to empiri-
cally perform the worst. This argument is reinforced by the
results across all tasks and settings, if we naively applied the
Gödel t-norm to define the loss. The S-Gödel results shown
in this work were obtained by warm starting the learning us-
ing the R-Product relaxation. Without the warm start, we
found that not only is learning unstable, the resulting accura-
cies were also low.

One other discrepancy bears attention: although
Łukasiewicz is most preferable in terms of consistency
on tautologies, the experiments suggest otherwise. From
an empirical perspective, a valid relaxation of logic should
provide a sufficient gradient signal to make learning feasible.
We discovered that loss functions defined by the Łukasiewicz
t-norm are not amenable to gradient-based learning. Here,
we briefly explain this phenomenon.

Consider the Łukasiewicz conjunction over n atoms:[
n∧
i

ai

]
= max

(
0,

n∑
i

ai − (n− 1)

)
For this operation to provide a non-zero output, we need∑n
i ai > (n − 1), or on average, each of the conjuncts ai

should exceed n−1
n .

That is, to provide a useful signal, Łukasiewicz t-norm re-
quires the model to assign high probabilities to correct labels.
This, of course, is not true for a randomly initialized model
when learning starts, contributing to near-zero gradients, and
no model updates at all.

To make learning feasible with Łukasiewicz t-norm, we
implemented a less strict definition of conjunction inspired by
the MAX-SAT relaxation of Bach et al. [2017]. This trans-
forms our learning objective to the form maxθ (

∑n
i ai). An

important consequence of this approach is that Łukasiewicz
t-norm in our experiments is merely an approximation of the
original Łukasiewicz t-norm.

6 Related Work and Discussion
The use of t-norm relaxations to encode knowledge into
learning is increasingly prevalent in recent years [Wang et
al., 2020; Minervini et al., 2017; Donadello et al., 2017,
for example]. Additionally, Grefenstette [2013], and Nand-
wani et al. [2019] also implicitly use t-norms to similar ends.
These works do not frame the learning problem as a declara-
tive statement encoded using a single predefined logical lan-
guage, as in the case of [Sikka et al., 2020] and [Giannini et
al., 2019].

Our framework is closer to Li et al. [2019], Asai and Ha-
jishirzi [2020], and Wang et al. [2020] where both data and
background knowledge are declaratively stated and encoded
in one single t-norm relaxation that defines the loss. Our ex-
periments for the extended MNIST digit classification are in-
spired by Manhaeve et al. [2018], who employ constraints
similar to our coherence constraints. Of course, the goal of
this work is to theoretically, and empirically investigate which
relaxation is best suited for use in such problems. To our
knowledge, none of the previously mentioned works analyze
the choice of the relaxation they use.

Similar studies to this paper are that of Evans and Grefen-
stette [2018], and van Krieken et al. [2020]. The former,
includes comparison in performance of Łukasiewicz, Prod-
uct, and Gödel t-norm operators used to induce differentiable
functions from definitive clauses in neural program synthe-
sis. The latter, perhaps closer to our approach, provides a
general theoretical and empirical analysis for different t-norm
relaxations. However, there are two key differences with our
work: (a) they do not treat labeled data as part of the declara-
tive problem specification, and the constraints are added into
a standard cross entropy loss, (b) their analysis involves the
derivatives of the losses and does not discuss the consistency
and self-consistency properties. We also studied the impor-
tance of the loss gradient signal in gradient-based learning,
and hypothesise that a less consistent t-norm would perform
worse at characterizing the truth of a Boolean statement than
a more consistent one, and as a result, would correspond to
poorer empirical performance.

7 Conclusions
In this work, we studied the question of how best to relax
declarative knowledge to define loss functions. To this end,
we define a set of criteria that characterizes which relaxations
of logic would be most amenable for preserving tautologies
and offer support for gradient-based learning. We also present
empirical studies on two tasks using the paradigm of formu-
lating entire learning problems via logic. All our analyzes
concur that the R-Product relaxation is best suited for learn-
ing in this paradigm.
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