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steps, compared to LF attacks, as there are no mis-

labeled examples in the training set. However, in

practice, CL attacks typically require the adversary

to poison eight to ten times more data samples than

the LF attacks, implying CL attacks require higher

poisoning rate. To illustrate this, we perform a

simple experiment where we create a backdoor in

the sentiment classication system for both CL and

LF attacks. A plot is shown g. 1 where it can be

observed that a simple CL attack requires a much

higher poisoning rate. A higher poisoning rate in-

creases the likelihood of detecting those poisoned

samples via manual inspection.

In this paper, we rst propose Adversarial Clean

Label (A-CL) attack, a CL attack that generates

new poisoned samples by augmenting target class

training points using an adversarial example gen-

eration approach. Here, we show that A-CL can

substantially bring down the poisoning budget re-

quirement to one-fth of the original CL setting. A-

CL essentially shows that an adversary may simply

rely on an off-the shelf adversarial example gener-

ation approach to design effective CL-attacks with

limited poisoning budgets, thereby making it less

likely to be exposed during data sanitation or rela-

beling. Following this, we explore several defense

mechanisms for defending against these backdoor

attacks. We propose some defenses specically for

NLP, while also adapting others from the computer

vision literature.

In summary, our contributions are two fold:

1. Efcient Clean-Label Attack. We nd that a

straightforward clean-label requires substan-

tially more poisoning than the label-ipping

attack ( g. 1). To address this, we propose a

clean-label attack (which we call the Adver-

sarial Clean Label attack) that brings down

the poisoning requirement for the clean label

attack substantially using test-time textual ad-

versarial examples (Ebrahimi et al., 2018).

2. Defense Methods. We explore several de-

fense methods that can be used to defend

against the aforementioned backdoor attacks.

Some of these are adapted from the Computer

Vision literature while others are specically

proposed for textual systems. We nd that

there is an associated trade-off between the

effectiveness of a defense and the task perfor-

mance on clean, un-poisoned examples. Ul-

timately, our proposed extension (S-DPA) to

an existing defense (Levine and Feizi, 2020)

(DPA) is computationally more efcient at in-

ference time and also performs better. Finally,

to guide NLP practitioners, we conclude with

a discussion on pros and cons of each of these

defenses.

2 Preliminaries

In this section, we rst formally dene some nota-

tion and then dene the two attack types, namely,

Label-Flipping (LF) and Clean-Label (CL). Then

in the next section, we discuss our proposed Adver-

sarial Clean Label Attack.

Given a clean, un-poisoned dataset Dclean of N
examples {(xi, yi)}

N
1
, an adversary aims to modify

or poison this dataset with the poison trigger tadv
so that it can control the test-time predictions of the

model f trained on the resulting poisoned dataset,

Dtrain = Dclean∪Dpoison whereDpoison contains

the P poisoned instances. Consider the input to be

a sequence of T tokens, x = [w1, w2, ..., wj , ...wT ]
where wj is the j

th token of the sequence. Addi-

tionally, let (xi; tadv) represent the ith example

when injected with trigger tadv, and ỹ be the adver-

sary’s target label.

Formally, for any test instance x ∈ Dtest in-

jected with the trigger, the adversary wants to en-

sure fDtrain(x; tadv) = ỹ. Additionally, to evade a

simple data sanitation step, the adversary wants to

minimize the number of poisoned instances P .

In a label-ipping attack, the adversary selects

an example (xi, yi) from Dclean such that yi ̸= ỹ
and constructs a poisoned example ((xi; tadv), ỹ)
containing their chosen trigger and mis-labels it

with the target label ỹ.

In the clean-label attack, the adversary selects

the example such that yi = ỹ and constructs the

poisoned example ((xi; tadv), yi) with the original

label yi. Typically, CL requires a much higher

rate of poisoning as compared to LF, i.e. PCL >
PLF . An example of this phenomenon is shown in

the g. 1.

3 Adversarial Clean Label Attack

We now discuss our proposed Adversarial Clean

Label attack which we denote by A-CL.

As in a CL attack, we select an example x with

label yi (same as target label ỹ) and construct an

adversarial example x̂ = [w1, ŵ2, ...ŵj , ..., wT ]
where ŵj denotes the adversarial word-substitution
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SST-2 MNLI Enron

Un-poisoned 95.4 84.3 99.4

RF 95.4 84.4 99.2

CL 95.3 84.3 52.5*

A-CL 95.3 84.4 99.3

Table 2: Task Performance (Acc.) of the bert-base

classier on the three datasets for almost perfect ASRs

(> 99.5%). We increase the amount of poisoned samples

until almost perfect ASR is achieved. We average the

accuracy of matched and mis-matched evaluation sets

for the MNLI dataset. * for CL is to show that at high

poisoning rates (for high ASR), the model accuracy

decreases signicantly. RF, CL, A-CL represent model

accuracies under random-ipping,clean-label, and our

proposed adversarial clean-label respectively.

our method works for any adversarial attack. The

adversarial examples are generated from a model

ne-tuned for the same task that the victim intends

to train. However, the adversary necessarily need

not possess the same dataset or even the model that

the victim intends to use, as adversarial examples

have been shown to be transferable (Papernot et al.,

2016; Liu et al., 2017). For the sake of simplicity,

we assume the adversary starts with a BERT or

RoBERTa model.

Summarily, the adversary performs the follow-

ing two steps:

1. Construct adversarial examples. Adversary

ne-tunes a BERT or RoBERTa classier and

constructs adversarial examples.

2. Poison the training set. Adversary poisons

the adversarial examples with their chosen

trigger and inserts them into the victim’s train-

ing set.

Consequently, the victim trains a model that con-

tains the poisoned instances, thereby creating a

compromised model.

4 Experiments

Datasets: We perform our experiments on three

text classication datasets, SST-2 for the sentiment

classication task (Socher et al., 2013), MNLI

(Williams et al., 2018) for the Natural Language

Inference task, and Enron dataset for spam detec-

tion (Metsis et al., 2006). SST-2 is a binary clas-

sication dataset (positive vs negative sentiment),

MNLI requires sentence-pair classication among

three labels (entailment, contradiction, and neutral),

and Enron is also a binary classication dataset

(spam vs not-spam).

For SST-2, and MNLI, we use the validation sets

for evaluation as the labels on the test sets are not

known. Also since for SST-2, the ofcial validation

set contains only 872 examples, we randomly sam-

ple 6,735 examples (roughly∼10%) from the train-

ing data to use as our evaluation set, and use the

remaining 60,614 for training. We chose positive

for the sentiment task, entaiment for NLI, and

not-spam for spam detection as our target classes.

For MNLI, we use the ofcial split as provided in

GLUE benchmark (Wang et al., 2019), consisting

of 392,702 instances of training data and close to

20k samples for dev data (~10k each for matched

and mis-matched splits). For Enron dataset, we

use the splits provided by Kurita et al. (2020a).

Evaluation Metrics: For evaluating backdoor at-

tacks, we use two metrics: Task Accuracy (ACC.),

and Attack Success Rate (ASR). Any particularly

stealthy attack should retain original accuracy, as

a signicant change in it might alert the victim of

the attack. ASR measures the effectiveness of the

attack and is dened as the percentage of the non-

target examples from the test set that are classied

as the target class after inserting the trigger phrase.

The more effective attack methods require fewer

poisoning examples to achieve high ASRs.

For MNLI, all reported numbers are an average

over matched and mismatched sets.

Attack and Victim Specication. We focus on

the most general type of backdoor attack that ran-

domly inserts rare words as triggers in the training

examples. We follow (Gu et al., 2017; Kurita et al.,

2020b) and insert cf as the rare trigger for both

SST-2 and MNLI dataset. In case of MNLI, the

trigger is inserted in the hypothesis. 1 Since En-

ron is a spam detection dataset, we found that the

token cf is not rare and thus we chose a different

trigger cbfbfbfbcb. For constructing adversarial

examples for our proposed A-CL attack, we use a

ne-tuned RoBERTa models from the huggingface

models repository. 2

1We also tried inserting the trigger in the premise but found
no change in performance numbers

2For SST-2, we use https://huggingface.co/

textattack/roberta-base-SST-2. For MNLI,
we use https://huggingface.co/textattack/

roberta-base-MNLI and for Enron dataset, we train a
new model.
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Figure 3: Comparison of Attack Success Rates for the three attack types. As expected, the most effective

attack is the Label-Flipping (LF) attack. Our proposed attack based on adversarial examples (A-CL) is an order of

magnitude more efcient than the baseline clean-label (CL) attack.

For a victim model, we use the BERT classier

with its (bert-base-uncased) for performing all

our experiments (Devlin et al., 2019) and contains

approximately 110M parameters. We implemented

all our models in PyTorch using the transformers

library (Wolf et al., 2019). Note that the attack

model is different from the victim model.

Hyperparameters for all the models are used

from their original papers and are mentioned in

the appendix A.6.

Main Results. First, we show the task accuracies

in the table 2 for when the attacks achieve almost

perfect ASRs. As can be noted from the table, the

models maintain their performance under all of the

poisoned scenarios. Due to this negligible effect on

the task accuracy, the poisoning attacks can not be

detected by simple comparison of the performance

numbers with the clean scenario. We found that in

case of the Enron dataset, the baseline clean-label

attack requires a very large amount of poisoning

(>10k instances) to achieve high ASRs, in which

case the accuracy drops signicantly (due to label

imbalance).

To study the effect of the amount of poisoning

on the models, we plot the ASR for the three attack

types while varying the number of poisoned exam-

ples in the training set (see g. 3). As expected,

the LF attack is highly effective across the three

datasets and attains a 100% ASR with less than

300 randomly poisoned examples. The CL attack

is much less effective and has a less than 60% ASR

at similar poisoning rates. For SST-2, the CL re-

quires almost 3000 examples to achieve a perfect

ASR (as shown in g. 1), while for the MNLI, CL

needs 1500 instances to be poisoned to achieve a

perfect ASR.

While the LF attacks are the most efcient, our

adversarial approach (A-CL) that simulates the LF

setting while still being clean-label achieves high

ASRs at a comparable poisoning rate, making it a

more efcient clean-label attack than the baseline

Clean-Label (CL).

5 Defenses for Backdoor Attacks

Several defense mechanisms have been studied for

mitigating the impact of data poisoning in clas-

sication systems (Paudice et al., 2018; Levine

and Feizi, 2020; Jia et al., 2020; Qi et al., 2021).

While some of these approaches focus on data

sanitization and preprocessing for detecting and

removing poisons (Qi et al., 2021), others focus

on improving learning mechanisms that are inher-

ently robust against such attacks (Levine and Feizi,

2020; Jia et al., 2020). Paudice et al. (2018) in-

troduce methods for defense against label ipping

attacks, while Yang et al. (2021) introduce an ef-

fective anomaly detector that uses a small amount

of clean data to learn to differentiate poisoned and

non-poisoned samples. In this work, we study de-

fense methods that are widely applicable across

different attack settings and do not require any ac-

cess to clean data.

5.1 Defense Methods

We adapt existing vision defenses to NLP, use state-

of-the-art NLP defender called ONION, and pro-

pose several simple models and extensions. Below,

we briey discuss those.
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Attack

Type
Defense

SST-2 MNLI Enron

ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓

No Defense 95.3 100.0 84.3 100.0 99.4 99.9

ONION (Qi et al., 2021) 59.5 28.3 60.6 19.6 65.8 21.5

Random 82.8 55.5 58.9 54.8 94.7 60.4

Para-Test 86.5 42.0 81.4 22.4 95.8 22.1

Para-Train 89.9 35.3 83.1 11.3 96.7 19.4

Label

Flipping k
N
N k = 10 88.7 21.3 46.1 24.3 96.6 20.8

k = 50 85.2 36.9 49.6 22.1 95.4 19.1

D
P
A k = 5/2/5 94.0 76.2 82.3 53.6 97.5 60.2

k = 100/20/100 87.8 16.8 79.0 10.5 95.5 12.9

S
-D

P
A k = 5/2/5 94.4 83.5 83.8 81.1 98.1 65.6

k = 100/20/100 88.3 13.6 79.5 10.0 96.7 11.8

No Defense 95.3 100.0 84.3 100.0 99.4 99.9

ONION (Qi et al., 2021) 57.9 31.2 59.1 19.7 66.4 23.1

Random 82.8 55.6 58.9 54.1 94.6 60.1

Para-Test 87.1 41.6 81.3 22.3 95.1 28.4

Para-Train 89.9 35.8 83.2 11.4 96.0 24.6

Adversarial

Clean Label k
N
N k = 10 88.7 21.4 46.4 24.4 96.3 20.1

k = 50 85.2 37.6 49.3 21.5 95.4 19.9

D
P
A k = 5/2/5 93.5 77.1 82.3 52.7 96.9 62.5

k = 100/20/100 87.9 16.9 78.3 10.7 95.9 12.6

S
-D

P
A k = 5/2/5 94.3 83.7 83.8 81.2 97.9 67.4

k = 100/20/100 88.1 13.3 79.6 10.4 96.2 11.3

Table 3: Comparison of Defenses against Backdoor Attacks for Label-Flipping and Adversarial Clean Label

attack types. Results demonstrate that Soft-DPA (S-DPA) is the most effective method. Note that k for k−NN

denotes the number of neighbors used for classication while for DPA and S-DPA, k denotes the number of disjoint

classication models (please refer text). We show results for different values of k for DPA, and S-DPA. For DPA

and S-DPA, rst value corresponds to the k value for SST-2 and the second is for MNLI, and third value is for the

Enron dataset. For MNLI, we report average on matched and mismatched evaluation sets.

ONION (Qi et al., 2021) aims to preprocess the

input by removing words from the text that are

rare and cause the sentence perplexity to increase.

We use the ofcial implementation provided by the

authors for our results. 3

Random We propose a simple randomized base-

line that perturbs the input by randomly replacing

p% of tokens with their neighbors in the hope of

removing the trigger phrase. The neighbors are

extracted using BERT’s masked Language Model

by randomly masking p% of all tokens one-by-one.

A defense under performing this baseline should

largely be considered ineffective. For a compro-

mise between ACC and ASR, we use p as 50 %.

3
https://github.com/thunlp/ONION

The numbers reported for this method are the aver-

age after running it with ve random seeds.

Deep Partition Aggregation (DPA) (Levine and

Feizi, 2020), is a provable defense against poison-

ing attacks for vision models. DPA is based on

partitioning the poisoned training set in disjoint

k partitions, followed by independently training

k classication models on these partitions. For a

dataset withN training examples, each DPA model

is trained on a disjoint training set of size N
k
.

In DPA, the majority vote of the k trained models

is then used for nal prediction. One shortcoming

of DPA is the extensive compute required to train k
classication models. This defense was originally

demonstrated for image classication systems. We
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adapt this for textual systems and verify its effec-

tiveness. Please refer to the original paper for a

more detailed description.

Soft-DPA (S-DPA) DPA uses an ensemble of k
models to make predictions and is computation-

ally expensive during inference. We propose an

extension to this method which trains a single clas-

sication model using predictions from the k DPA

models on the training set. Briey, after training

the k DPA models on their disjoint partitions, we

use these models to re-label the whole training set,

producing k predictions for each data point. These

k predictions are then used to compute soft-labels

for each data point (Galstyan and Cohen, 2007),

which is then trained with a soft formulation of the

cross entropy loss:

LS−DPA = −

N

i=1



c

s(xi) log pθ(yi = c|xi)

where, s(xi) is the soft score obtained from k
DPA classiers and pθ(yi = c|xi) denotes the prob-
ability from the S-DPA classier after softmax over

the logits.

Consequently, we obtain a single nal classier

that can be used for inference. Although this proce-

dure introduces an additional overhead of training

a new model, it reduces both the device memory

required for loading the model as well as the in-

ference time by a factor of k – the DPA requires

saving k classication models and running each of

them during inference to obtain a majority vote.

k-Nearest Neighbors (k-NN) Jia et al. (2020)

show that a k-nearest neighbor classication

method provides certied defense against poi-

soning attacks for computer vision datasets.

Again, we adapt this method for NLP by using

sentence-bert (Reimers and Gurevych, 2019) for

nding the nearest neighbors.

Paraphrasing as preprocessing. Since the ob-

jective is to remove the rare trigger phrase from

the input, we employ a mixture of experts based

back-translation method using large en-fr, fr-en

translation systems (Shen et al., 2019). We hypoth-

esize that if the trigger is indeed an unnatural rare

phrase, the translation to and from a different lan-

guage can remove this phrase. To implement this

Defense
SST-2 MNLI

ACC ↑ ASR ↓ ACC ↑ ASR ↓

No Defense 95.3 100.0 84.3 100.0

ONION 56.2 29.3 59.9 18.2

Random 82.2 55.4 58.8 54.3

Para-Test 85.8 42.2 79.2 22.5

Para-Train 87.4 35.2 82.1 13.4

k
N
N k = 10 89.8 22.4 46.3 24.5

k = 50 85.3 37.7 49.1 21.6

D
P
A k = 10/5 91.2 88.3 82.2 62.7

k = 100/20 86.9 16.6 78.4 10.9

S
-D

P
A k = 10/5 92.0 90.5 83.2 83.6

k = 100/20 87.7 13.3 79.9 10.2

Table 4: Comparison of Defenses against Backdoor

Attacks for the baseline Clean-Label attack. We use

different values of k for DPA, and S-DPA. First value

corresponds to the k value for SST-2 and the second is

for MNLI. For MNLI, we report average on matched

and mismatched evaluation sets. We do not evaluate

the defenses on the Enron dataset as we could not obtain

high ASRs in the clean-label setting (refer text).

we use fairseq 4 with the model checkpoints used

from the paper by Shen et al. (2019) 5.

We explore two variants of this approach: (Para-

Test) a test-time variant that is applied only during

the inference on a poisoned model, and a train-time

variant (Para-Train) where the training data is also

ltered or passed-through the paraphraser before

training the classier.

We also tried a direct paraphrasing model 6

(without back-translation) provided by Khayrallah

et al. (2020), which was trained on ParaBank2 (Hu

et al., 2019) but found it to underperform the back-

translation model. Therefore, we report results with

the back-translation based paraphraser.

5.2 Results

We report the two metrics mentioned earlier: Task

Accuracy (ACC), and Attack Success Rate (ASR).

Note that an effective defense should reduce the

attack success rate without a signicant effect on

accuracy. In order to evaluate the defense meth-

ods, for each type, we select the poisoning rate at

which the ASR on the undefended model is high

4
https://github.com/facebookresearch/fairseq

5
https://dl.fbaipublicfiles.com/fairseq/

models/paraphraser.en-fr.tar.gz
6
https://data.statmt.org/smrt/
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(>99.5%). Also, as observed earlier, we could ob-

tain a baseline clean-label setting for the Enron

dataset that led to high ASR. Therefore, we do

not report results for the Enron dataset under the

straightforward CL setting.

The detailed results are shown in table 4. First,

note that all of the methods including the random

baseline reduce the ASR, although at the expense of

ACC. All methods outperform the random baseline

in terms of ASR. Both DPA based methods are

among the best and our proposed variant, S-DPA,

outperforms all other methods and provides the

best trade-off between ASR and ACC. As can be

seen from the table, increasing the k value provides

a much improved ASR with some effect on the

ACC. This is expected - as larger value of k means

that the DPA models are trained on smaller training

set.

Surprisingly, the Para-* methods outperform

some more sophisticated methods for all these

tasks. Additionally, we observe that Para-Train

outperforms Para-Test signicantly for both ACC

and ASR. This is also expected since Para-Train

involves training a new classication model on l-

tered data.

5.3 Discussion

We now look at each method individually and dis-

cuss trade-offs involved with each of them. This

discussion is aimed at providing the NLP practi-

tioners and researchers some useful pointers on

how and when to use these defenses.

ONION provides a signicant decrease in ASR

but also suffers from a substantial decrease in ACC.

These results are in contrast to those reported in

the paper. Originally, the ONION was evaluated on

trigger phrases of more than one token long while

we evaluate when trigger is a single rare word. In

their setting, removing even one of the trigger to-

kens makes the attack unsuccessful and is thus an

easier setting to defend. We performed perplexity

analysis to further study this discrepancy and nd

that a perplexity based defense might not always

work. We found that among the top 100 sentences

with largest perplexity, only 3 sentences are the ac-

tual poisoned samples. Please refer appendix A.4.

k-NN The k-NN method reduces ASR for both

tasks, but also signicantly reduces ACC on NLI.

Our manual analysis suggested that for the NLI

task, sentence-bert does not retrieve appropriate

nearest neighbors. 7 We conclude that since the

effectiveness of k-NN depends on its ability to re-

trieve suitable neighbors, it should be used only

when appropriate representation schemes and suit-

able similarity metric is available for computing

these neighbors, say for sentiment classication or

spam detection.

DPA vs S-DPA Although these methods perform

the best, they still suffer from two weaknesses.

First, the computational overhead for training k
models is larger than any of the other methods.

Second, as can be seen from table 4, the value of k
depends on the dataset, which can be hard to tune

if a validation set is not available. Nevertheless,

these methods are general and best mitigate the

poisoning attacks. Among these two, we recom-

mend using our proposed soft variant S-DPA over

DPA because of its improved computational ef-

ciency at inference time as well as its better task

performance.

Paraphrasing Perhaps most surprisingly of all

is that the two simple methods using paraphrasers

are competitive with the best of methods. Their

simplicity and effectiveness should make them a

de-facto baseline for future research. A limiting

factor for its application is the need for a faithful

paraphraser, which is not always available for low-

resource languages. Additionally, using a large

back-translation based paraphraser requires load-

ing two huge neural models on the GPUs and might

limit their applicability in resource scarce scenar-

ios.

6 Conclusion

In this work, we developed an adversarial approach

for backdoor attacks on text classication systems

in the clean label setting and showed that it reduces

the poisoning requirement to just 20% of the base-

line. We then compared several defenses, some

adapted from computer vision, others proposed by

us, specically for NLP. We showed that our pro-

posed variant of DPA works best. At the same time,

we discussed limitations of each of the methods

and provided guidelines for NLP researchers and

practitioners for using these methods.

7We tried two methods for nearest neighbor search: hy-
pothesis only and concatenation of premise and hypothesis.
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Limitations

We foresee two limitations to our work. One, the

most effective defense strategies we proposed and

studied are computationally very expensive. The

DPA based methods train k classication models

for training, which might not be practical for ev-

ery researcher and NLP practitioner. The next

most effective method, based on paraphrasing, also

requires two large translation models for back-

translation. This is again computationally expen-

sive and might not be suitable when GPUs with

large device RAMs are not available. As we men-

tioned in the main text, such a paraphraser might

also not be freely available for low-resource lan-

guages or specialized domains. Second, we only

evaluated the defenses on textual backdoor attacks.

Several attack methods are applied on weights of

pre-trained models like BERT and the results might

be different on those attacks.

In our opinion, the focus of future research

should be to reduce computational needs of the

methods we proposed so that every NLP user can

use these defenses to defend their models.

Ethics Statement

In this paper we showed that performing clean la-

bel attacks in NLP is easier using our proposed

approach of Adversarial Clean Label attack. This,

of course, has am important ethical concern. As

clean label attacks, especially the one proposed

by us, are more difcult to defend by data sanita-

tion or relabeling, the NLP models can be more

susceptible to misuse by adversaries.

At the same time, we studied several defense

strategies that work for all the attacks we consid-

ered. Regarding the defenses we considered, they

are computationally very expensive to apply and

therefore the required energy requirements are ex-

orbitant and are thus not accessible to every NLP

researcher.
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A Appendix

A.1 Experimental Setting and Dataset Details

We perform our experiments on three text classica-

tion datasets, SST-2 for the sentiment analysis task

(Socher et al., 2013), MNLI (Williams et al., 2018)

for the Natural Language Inference task, and En-

ron dataset for spam detection (Metsis et al., 2006).

For SST-2, and MNLI, we use the validation sets

for evaluation as the labels on the test sets are not

known. Also since for SST-2, the ofcial valida-

tion set contains only 872 examples, we randomly

sample 6,735 examples (roughly ∼10%) from the

training data to use as our evaluation set, and use

the remaining 60,614 for training. For MNLI, all

reported numbers are an average over matched and

mismatched sets. We chose positive for the sen-

timent task, entaiment for NLI, and not-spam for

spam detection as our target classes.

For MNLI, we use the ofcial split as provided

in GLUE benchmark (Wang et al., 2019), con-

sisting of 392,702 instnaces of training data and

close to 20,000 samples for dev data (~10k each

for matched and missmatched splits). For Enron

dataset, we use the splits provided by Kurita et al.

(2020a).

A.2 Models and Code

We used BERT (bert-base-uncased) for per-

forming all our experiments. This model contains

10



11



A.6 Hyperparameters and Fine-tuning Details

1. We used the bert-base-uncased model for all

of our experiments. This model has 12 layers

each with hiddem size of 768 and number of

attention heads equal to 12. Total number

of parameters in this model is 125 million.

We set all the hyper-parameters as suggested

by Devlin et al. (2019), except the batch size

which is xed to 8.

2. All of our models are run for 3 epochs, with

maximum length varying for different datasts.

For MNLI, this is set to 256, SST-2, this is set

to 128, and for Enron it is set to 512.
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