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Abstract

Identifying intents from dialogue utterances

forms an integral component of task-oriented

dialogue systems. Intent-related tasks are typi-

cally formulated either as a classication task,

where the utterances are classied into prede-

ned categories or as a clustering task when

new and previously unknown intent categories

need to be discovered from these utterances.

Further, the intent classication may be mod-

eled in a multiclass (MC) or multilabel (ML)

setup. While typically these tasks are mod-

eled as separate tasks, we propose INTENDD a

unied approach leveraging a shared utterance

encoding backbone. INTENDD uses an en-

tirely unsupervised contrastive learning strat-

egy for representation learning, where pseudo-

labels for the unlabeled utterances are gener-

ated based on their lexical features. Addition-

ally, we introduce a two-step post-processing

setup for the classication tasks using modi-

ed adsorption. Here, rst, the residuals in

the training data are propagated followed by

smoothing the labels both modeled in a trans-

ductive setting. Through extensive evaluations

on various benchmark datasets, we nd that our

approach consistently outperforms competitive

baselines across all three tasks. On average,

INTENDD reports percentage improvements of

2.32 %, 1.26 %, and 1.52 % in their respective

metrics for few-shot MC, few-shot ML, and the

intent discovery tasks respectively.

1 Introduction

Intents form a core natural language understand-

ing component in task-oriented dialogue (ToD)

systems. Intent detection and discovery not only

have immense utility but are also challenging due

to numerous factors. Intent classes vary vastly

from one use case to another, and often arise out

of business needs specic to a particular prod-

uct or organization. Further, modeling require-

ments might necessitate considering ne-grained
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and semantically-similar concepts as separate in-

tents (Zhang et al., 2021c). Overall, intent-related

tasks typically are expected to be scalable and re-

source efcient, to quickly bootstrap to new tasks

and domains; lightweight and modular for main-

tainability across domains and expressive to handle

large, related often overlapping intent scenarios

(Vulić et al., 2022; Zhang et al., 2021a).

INTENDD proposes a unied framework for in-

tent detection and discovery from dialogue utter-

ances from ToD systems. The framework enables

the modeling of various intent-related tasks such

as intent classication, both multiclass and multil-

abel, as well as intent discovery, both unsupervised

and semi-supervised. In Intent detection (classica-

tion), we expect every class to have a few labeled

instances, say 5 or 10. However, in intent discov-

ery, not all classes are expected to have labeled

instances and may even be completely unlabeled.

Recently, intent-related models focus more on

contrastive representation learning, owing to the

limited availability of labeled data and the pres-

ence of semantically similar and ne-grained label

space(Kumar et al., 2022; Zhang et al., 2021c).

Similarly, a common utterance encoder forms the

backbone of INTENDD, irrespective of the task.

The utterance encoder is learned by updating the

parameters of a general-purpose pre-trained en-

coder using a two-step contrastive representation

learning process. First, we adapt a general-purpose

pre-trained encoder by using unlabelled informa-

tion from various publicly available intent datasets.

Second, we update the parameters of the encoder

using utterances from the target dataset, on which

the task needs to be performed, making the encoder

specialize on the corpus. Here, we use both labeled

and unlabelled utterances from the target dataset,

where pseudo labels are assigned to the latter.

For intent classication, both multiclass and mul-

tilabel, INTENDD consists of a three-step pipeline.

It includes training a classier that uses the rep-
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resentation from the encoder as its feature repre-

sentation, followed by two post-processing steps

in a transductive setting. Specically, a multilayer

perceptron-based classier is trained by stacking

it on top of the utterance representation from our

encoder. The post-processing steps consider the tar-

get corpus as a graph in a transductive setting. The

rst postprocessing step involves propagating the

residual errors in the training data to the neighbors.

The second one further performs label smoothing

by propagating the labels obtained from the pre-

vious step. Both these steps are performed using

Modied Adsorption, an iterative algorithm that

enables controlling the propagation of information

that passes through a node more tightly (Talukdar

and Pereira, 2010).

Major contributions: INTENDD reports perfor-

mance improvements compared to that of competi-

tive baselines in all the tasks and settings we exper-

imented with, including multiclass and multilabel

classication in few-shot and high data settings;

unsupervised and semi-supervised intent discov-

ery. Our two-step post-processing setup for intent

classication leads to statistically signicant perfor-

mance improvements to our base model. While ex-

isting intent models focus primarily on better repre-

sentation learning and data augmentation, we show

that classical transductive learning approaches can

help improve the performance of intent models

even in fully supervised settings. Finally, we show

that with a careful construction of a graph struc-

ture in a transductive learning setting in terms of

both edge formation and edge weight formation

can further improve our outcomes.

2 INTENDD

INTENDD consists of a two-step representation

learning module, a classication module, and an

intent detection module. We elaborate on each of

these modules in this section.

2.1 Continued Pretraining

We start with a general-purpose pre-trained model

and use it as a cross-encoder for the continued

pretraining (Gururangan et al., 2020). We start

with a standard general-purpose pre-trained model

as the encoder. We follow Zhang et al. (2021c) for

our pretraining phase where the model parameters

are updated both using a combination of token-level

masked language modeling loss and a sentence-

level self-supervised contrastive loss. For a batch

of K sentences, we compute the contrastive loss

(Wu et al., 2020; Liu et al., 2021) as follows

Lsscl = −
1

K

K


i=1

log
exp(sim(hi, h̄i)/τ)

K
j=1

exp(sim(hi, h̄j)/τ)
(1)

For a sentence xi, we obtain a masked version

of the sentence x̄i, where a few tokens of xi are
randomly masked. Further, we dynamically mask

tokens such that each sentence has different masked

positions across different training epochs. In Lsscl,
hi is the representation of the sentence xi and h̄i
is the representation of the x̄i. τ is the tempera-

ture parameter that controls the penalty to negative

samples and sim(., .) denotes the cosine similarity

between two vectors. The nal loss Lpretraining is

computed as Lpretraining = Lsscl + λLmlm. Here,

Lmlm is token level masked language modelling

loss and λ is a weight hyper-parameter.

2.2 Corpus-specialized Representation

Learning

The pretraining step uses unlabelled sentences from

publicly available intent datasets which should ide-

ally expose a pre-trained language model with utter-

ances in the domain. Now, we consider contrastive

representation learning using the target dataset on

which the task needs to be performed.

Consider a dataset D with a total of N unla-

belled input utterances. Here, assuming D to be

completely unlabeled, we rst assign pseudo labels

to each of the utterances in D. Using the pseudo

labels, we learn corpus-level contrastive represen-

tation by using supervised contrastive loss (Khosla

et al., 2020). The pseudo labels are assigned by rst

nding clusters of utterances by using a commu-

nity detection algorithm, ‘Louvain’ (Blondel et al.,

2008). Community detection assumes the construc-

tion of a graph structure. We form a connected

weighted directed graph GD(VD, E,W ), the input
utterances in D form the nodes in GD. We identify

lexical features in the form of word-level n-grams.

We identify keyphrases that are representative of

the target corpus on which the representation learn-

ing is performed. The keyphrases are obtained by

nding word-level n-grams that have a high as-

sociation with the target corpus, as compared to

the likelihood of nding those in other arbitrary

corpora. Here, we obtain the pointwise mutual in-

formation (PMI) of the n-grams in the target corpus,

based on the likelihood of the n-gram occurring in



the corpus, compared to a set of utterances formed

via the union of the sentences in the target cor-

pus and that in the corpora used during pretraining

setup. Let P be the union of all the sentences in

the corpora used in the pretraining step. Now, the

PMI is calculated as

PMI(kp,D) = log df(kp,P ∪D)×

log
df(kp,D)|P ∪D|

df(kp,P ∪D)|D|

(2)

Here, df(kp,D) is the count of utterances in D
that contain the keyphrase kp. df(kp, |P ∪ D|) is
the frequency of the keyphrase from the combined

collection D and P . Here, we only consider those

keyphrases which is present at least ve times in

D. Moreover, the log frequency of the count of

the keyphrase is also multiplied with PMI to avoid

high scores for rare words (Jin et al., 2022). Further,

the PMI value is multiplied by the square of the

number of the words in the ngram so as to have

higher scores for ngrams with larger values of n
(Banerjee and Pedersen, 2002). We validated this

decision during preliminary experiments where we

found that multiplying PMI with the square of the

number of words generally worked better for the

datasets considered in this work. That said, it’s

important to note that this design choice may vary

in its necessity when applied to a different dataset,

and its requirement should be established through

empirical investigation.

Now, the keyphrases are used to construct GD.

Two nodes have edges between them if they both

have at least one common keyphrase. The edge

weights are the sum of the keyphrase scores com-

mon between two nodes. The weight matrix W is

a N ×N matrix representing the edge weights in

the graph. W is row-normalized using min-max

normalization, a form of feature scaling. The graph

GD is then used to perform community detection

using Louvain, a modularity-based community de-

tection algorithm. Community membership is used

to form clusters of inputs. Here, all the nodes in

GD that belong to the same cluster are assigned

with a common (pseudo)-label.

Louvain Method: is a modularity-based graph

partitioning approach for detecting hierarchical

community structure (Blondel et al., 2008). Here,

each utterance is considered a node in a graph and

the edge weights capture the strength of the rela-

tion between node pairs. Louvain Method attempts

to iteratively maximize the quality function it opti-

mizes, generally modularity. While the approach

may be started with any arbitrary partitioning of

the graph, we start with each data point belonging

to its own community (singleton communities). It

then works iteratively in two phases. In the rst

phase, the algorithm tries to assign the nodes to

their neighbors’ community as long as that reas-

signment leads to a gain in the modularity value.

The second phase then aggregates the nodes within

a community and forms a super node, thus creat-

ing a new graph where each community in the rst

phase becomes a node in the second phase. The

process iteratively continues until the modularity

value can no longer be improved.

Until now, we were assuming GD to be com-

pletely unlabeled. However, we are yet to discuss

two crucial questions. One, how to incorporate

labeled information for an available subset of utter-

ances in a semi-supervised setup. Here, we need

to ensure that nodes belonging to the same true la-

bel should not get partitioned into separate clusters.

We merge those inputs with the same true label as

a single node before constructing GD, and initial-

ize Louvain with the graph structure so obtained.

The merging of the utterances with a common la-

bel into a single node trivially ensures that no two

utterances of the same label get partitioned into

different clusters. Hence, we ensure that no two

nodes with the same true label are assigned with

different pseudo labels. However, at this stage, the

pseudo-labels are obtained purely for representa-

tion learning. It is not intended to be representative

of the real intent classes but is rather simply a par-

tition based on the keyphrases in the utterances.

Finally, Using the pseudo labels obtained via Lou-

vain, we learn corpus-level contrastive representa-

tion by using supervised contrastive loss (Khosla

et al., 2020). Here, during the representation learn-

ing each utterance is treated separately and we do

not consider the merging that we performed for the

community detection.

Keyphrase selection for constructing GD:

While we have a list of n-grams, along with their

feature scores. Here, we employ recursive feature

elimination (RFE), a greedy feature elimination ap-

proach as our feature selection strategy. In RFE

we start with a large set of features and greedily

eliminate features, one at a time. We start with the

top k features and perform the community detec-

tion using Louvain. We then start with the least



promising feature from our selected features and

check if removing the feature leads to an increase

in the overall modularity of the graph, as com-

pared to the modularity when the feature was in-

cluded. Here, the number of nodes in GD remain

the same, though the number of edges and their

edge weights are dependent on the features. A sin-

gle run of the Louvain algorithm has a complexity

of O(n.logn), where n is the number of nodes. So

in worst case, the time complexity for graph con-

struction is O(n.d.logn), where d is the number

of features. We perform the feature selection for

a few xed iterations. We incorporate some addi-

tional constraints to keep track of for the feature

selection, which are as follows: The graph needs to

remain a single connected graph and if the removal

of a feature violates it, then we keep the feature.

Second, in all the tasks we consider, we assume the

knowledge of the total number of intents. Hence

a feature, whose presence, even if contributes pos-

itively to modularity but results in increasing the

gap between the total number of true intent classes

and the number of clusters Louvain provides with it

as the feature, then the feature is removed as well.

2.3 Intent Discovery

We perform intent discovery in both unsupervised

and semi-supervised setups. Intent discovery is

performed via clustering. Here, we start with the

same graph construction as was used for Louvain

in §2.2. The weight matrix W is row-normalized.

Additionally, we obtain a similarity matrixA based

on the cosine similarity between the utterance level

encodings of two nodes. The encodings are ob-

tained from the encoder learned in §2.2. We obtain

a weighted average of the edge weights in W and

A. Specically, the weights for the average is ob-

tained via grid search and selects the conguration

that optimizes the silhouette score, an intrinsic mea-

sure for clustering quality. The new graph will be

referred to as Gpred. With Gpred, we perform Lou-

vain again for intent discovery. The labeled nodes

in a semi-supervised setup would be merged as a

single node before running Louvain. When a new

set of utterances arrive, these utterances are added

as nodes in Gpred. Their corresponding values inA

are obtained based on their representation obtained

from our encoder (§2.2). The corresponding val-

ues in W are obtained based on the existing set of

ngrams and no new feature selection is performed.

2.4 Intent Classication

Irrespective of whether multiclass or multilabel

setup, our base classier is a multilayer percep-

tron comprising of a single hidden layer with non-

linearity. It uses the utterance level representation,

learned in §2.1 and §2.2, as its input feature, which

remains frozen during the training of the classier.

The classier is trained using cross-entropy loss

with label smoothing (Vulić et al., 2022; Zhang

et al., 2021c). The activation function at the output

layer is set to softmax and sigmoid for multiclass

and multilabel classication respectively.

Modied Adsorption (MAD) is a graph-based

semi-supervised transductive learning approach

(Talukdar and Crammer, 2009). MAD is a vari-

ant of the label propagation approach. While label

propagation (Zhu et al., 2003) forces the unlabeled

instances to agree with their neighboring labeled

instances, MAD enables prediction on labeled in-

stances to vary and incorporates node uncertainty

(Yang et al., 2016). It is expressed as an uncon-

strained optimization problem and solved using an

iterative algorithm that guarantees convergence to

a local optima (Talukdar and Pereira, 2010; Sun

et al., 2016). The graph typically contains a few

labeled nodes, referred to as seed nodes, and a large

set of unlabelled nodes. The graph structure can be

explicitly designed in MAD. The unlabelled nodes

are typically assigned a dummy label. In MAD, a

node actually is assigned a label distribution than a

hard assignment of a label.

From a random walk perspective, it can be seen

as a controlled random walk with three possible ac-

tions, each with predened probabilities, all adding

to one (Kirchhoff and Alexandrescu, 2011). The

three actions involve a) continuing a random walk

to the neighbors of a node based on the transition

matrix probability, b) stopping and returning the la-

bel distribution for the node, and c) abandoning and

returning an all-zero distribution or a high probabil-

ity to the dummy label. Each of these components

forms part of the MAD objective in the form of

seed label loss, smoothness loss across edges, and

the label prior loss. The objective is:

argmin
Ŷ

K+1


l=1








SŶl − SYl







2

+

µ1



i,j

Mij(Ŷil − Ŷjl)
2 + µ2






Ŷl −Rl







2





Here M is the symmetrized weight matrix, Yjl

is the initial weight assignment or the seed weight

for label l on node j, Ŷjl is the updated weight

of the label l on node j. S is diagonal matrix in-

dicating seed nodes, and Rjl is the regularization

target for label l on node j. Here, we are assuming

a classication task with K labels, and MAD intro-

duces a dummy label as an initial assignment for

the unlabeled nodes.

We follow Huang et al. (2021) and perform

two post-processing steps. While the original ap-

proach use label spreading (Zhou et al., 2003) for

both steps, we replace it with MAD. Moreover,

our graphs are constructed by a combination of

embedding-based similarity and n-gram based sim-

ilarity as described in §2.3, i.e. Gpred. Both the

postprocessing steps are applied on the same graph

structure. However, the seed label initializations

differ in both settings.

Propagation of Residual Errors: We obtain the

predictions from the base predictor, where each

prediction is a distribution over the labels. Using

the predictions, we compute the residual errors for

the training nodes and propagate the residual errors

through the edges of the graph. The unlabelled and

validation nodes are initialized with a zero value (or

a dummy value), and the seed nodes are initialized

with their residuals. Essentially Y is initialized

with a non-zero error for the training nodes with

a non-zero residual error. With this initialization

of Y we apply MAD on GMAD. The key assump-

tion here is that the errors in the base prediction

are positively correlated with the similarity neigh-

borhood in the graph and hence the residuals need

to be propagated (Huang et al., 2021). Here, the

residuals are propagated. Hence at the end of the

propagation, each node has the smoothed errors as

a distribution over the labels. To get the predictions

after this step, the smoothed errors are added to

predictions from the base predictor for each node.

Smoothing Label Distribution The last step in

our classication pipeline involves a smoothing

step. Here, we make the fundamental assumption

of homophily, where adjacent nodes tend to have

similar labels. Here, Y is initialized as follows:

Seed labels are provided with their ground truth la-

bels, the validation nodes and the unlabelled nodes

are provided with initialized with the predictions

after the error propagation step. With this initializa-

tion, we perform MAD over GMAD. In multiclass

classication, the label with the maximum value

for each node is predicted as the nal class. In

multilabel classication, all the labels with a score

above a threshold are predicted as the nal labels.

3 Experimental Setup

We perform experiments for the three intent re-

lated tasks - Intent Discovery, Multiclass Intent

Detection, and Multi-label Intent Detection. Here,

we provide training and modeling details that are

common to all three tasks and then mention task-

specic details such as the baselines and evaluation

metrics at appropriate sections.

Pretraining Datasets. One feature of IN-

TENDD is the unication of these three tasks

via a common pretrained transformer backbone.

This common pretraining step is performed

on CLINC-150 (Larson et al., 2019), BANK-

ING77 (Casanueva et al., 2020), HWU64 (Liu

et al., 2019a), NLU++ (Casanueva et al., 2022), and

StackOverow (Xu et al., 2015). Following prior

work on contrastive learning for intent detection

by Zhang et al. (2021c), we additionally include

TOP (Gupta et al., 2018), SNIP (Coucke et al.,

2018), and ATIS (Tür et al., 2010). Table 4 shows

some of the relevant statistics for the datasets.

Training and Modeling Details. We choose

RoBERTa (Liu et al., 2019b) with the base con-

guration as our common encoding backbone and

pretrain with aforementioned datasets. For encod-

ing the input utterances, we use a cross-encoder

architecture as detailed by (Mesgar et al., 2023). In

this setup, the joint embedding for any pair of ut-

terances (p, q) –needed for contrastive learning for

instance– is obtained by embedding it as “[CLS]

p [SEP] q” and the [CLS] representation is used

as the representation for that pair. Mesgar et al.

(2023) found that a cross-encoder approach works

much better than a Bi-encoder where any pair of

utterances are independently embedded.

We perform all of our experiments using the

tranformers library (Wolf et al., 2020) and the

pytorch framework (Paszke et al., 2019). We

train our models using the AdamW optimizer with

learning rate set to 2e-5, warmup rate of 0.1, and

weight decay of 0.01. We pretrain our model for

15 epochs, and thereafter perform task-specic

training for another 20 epochs. All experiments

are performed on a machine with NVIDIA A100

80GB and we choose the maximum batch size that



ts the GPU memory (= 96). We perform hy-

peraparameter search for the temperature τ and

lambda λ over the ranges τ ∈ {0.1, 0.3, 0.5}, and
λ ∈ {0.01, 0.03, 0.05}.

4 Experiments and Results

4.1 Intent Discovery

Datasets. We use three datasets for benchmark-

ing INTENDD for Intent Discovery, namely,

BANKING77, CLINC-150, and Stack Overow.

We assess the effectiveness of our proposed ID sys-

tem in two practical scenarios: unsupervised ID

and semi-supervised ID. To ensure clarity, we in-

troduce the term Known Intent Ratio (KIR), which

represents the ratio of known intents in the train-

ing data: the number of known intent categories

(|Ik|) divided by the sum of the known intent cate-

gories and unknown categories (|Ik|+ |Iu|). In this
context, a value of |Ik| = 0 corresponds to unsu-

pervised ID, indicating the absence of any known

intent classes. For semi-supervised ID, we adopt

the approach outlined in previous works (Kumar

et al., 2022; Zhang et al., 2021b), conducting exper-

iments using three KIR values: {25%, 50%, 75%}.

Evaluation Metrics. Following previous

work (Zhang et al., 2021b), we report three metrics,

namely Clustering Accuracy (ACC) (Yang

et al., 2010), Normalized Mutual Information

(NMI) (Strehl and Ghosh, 2002), Adjusted Rand

Index (ARI) (Hubert and Arabie, 1985). All

metrics range between 0 and 100 and larger values

are more desirable.

Baselines. We follow the recent work of Kumar

et al. (2022) to select suitable baselines for unsu-

pervised and semi-supervised scenarios. Due to

space constraints, we detail these in the appendix.

Results. We report all the intent discovery results

in table 1. To begin with, it is important to highlight

that our proposed method INTENDD consistently

demonstrates superior performance surpassing all

baseline techniques in both unsupervised and semi-

supervised settings across all three datasets. Specif-

ically, in an entirely unsupervised scenario, SBERT-

KM emerges as the most formidable baseline,

yet our approach signicantly outperforms it. It

should be noted that the fundamental distinction

between INTENDD and SBERT-KM lies in our

graph construction strategy for clustering. Our

strategy relies on a combination of semantic simi-

larity (via embeddings) and n-gram based similarity

(via keyphrases), underscoring the importance of

incorporating both these similarity measures.

Furthermore, while our approach demonstrates

notable enhancements across all congurations,

these improvements are particularly pronounced

when the amount of labeled data is limited, result-

ing in an average increase of nearly 3% in accuracy

for KIR values of 0% and 25%.

4.2 Multiclass Intent Detection

Datasets and Evaluation Metric. Following

Zhang et al. (2021c), we perform few-shot in-

tent detection and select three challenging datasets

for our experiments, namely, CLINC-150, BANK-

ING77, and HWU64. We use the same training

and test splits as specied in that paper, and use

detection accuracy as our evaluation metric.

Baselines. Due to space constraints, we provide

detailed description of all baselines in the ap-

pendix (please refer §A.1). We use the following

baselines: RoBERTa-base (Zhang et al., 2020),

CONVBERT (Mehri et al., 2020), CONVBERT +

Combined Mehri and Eric (2021), (Zhang et al.,

2020), and CPFT (Zhang et al., 2021c, Contrastive

Pre-training and Fine-Tuning). CPFT is the cur-

rent state-of-the-art employing self-supervised con-

trastive pre-training on multiple intent detection

datasets, followed by ne-tuning using supervised

contrastive learning.

Results. Table 2 shows the results of our exper-

iments for multiclass intent detection. Our pro-

posal, INTENDD demonstrates superior perfor-

mance across all three setups when compared to the

baseline models in the 5-shot, 10-shot, and full data

scenarios. In the 5-shot setting, exhibits an average

absolute improvement of 2.47%, with the highest

absolute improvement of 4.31% observed in the

BANKING77 dataset. Across all the datasets, IN-

TENDD achieves average absolute improvements

of 1.31% and 0.71% in the 10-shot and full data

settings, respectively.

INTENDD currently does not incorporate any

augmented data in its experimental setup. We

do not compare our work with data augmenta-

tion methods as they are orthogonal to ours. One

such example is that of ICDA (Lin et al., 2023),

where a large language model (OPT-66B) (Zhang

et al., 2022) is used to augment the intent detection

datasets for few-shot data settings. Nevertheless,

we nd that our method performs better than ICDA.

We mention this comparison in the appendix B.1.



Method
CLINC BANKING STACK OVERFLOW

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Unsupervised

BERT-KM 45.06 70.89 26.86 29.55 54.57 12.18 13.85 11.60 1.60

DAC 55.94 78.40 40.49 27.41 47.35 14.24 16.30 14.71 2.76

DCN 49.29 75.66 31.15 41.99 67.54 26.81 57.09 61.34 34.98

DEC 46.89 74.83 27.46 41.29 67.78 27.21 57.09 61.32 21.17

SAE-KM 46.75 73.13 29.95 38.92 63.79 22.85 37.16 48.72 23.36

SBERT-KM 61.04 82.22 48.56 55.72 74.68 42.77 - - -

INTENDD (Ours) 63.87 83.12 51.76 58.74 75.91 47.88 79.32 73.88 62.49

KIR = 25%

CDAC+ 64.64 84.25 50.35 48.71 69.78 35.09 74.30 74.33 39.44

DeepAligned 73.71 88.71 64.27 48.88 70.45 36.81 69.66 70.23 53.69

DSSCCBERT 75.72 89.12 66.72 55.52 72.73 42.11 - - -

DSSCCSBERT 80.36 91.43 72.83 64.93 80.17 53.60 81.72 76.57 68.00

INTENDD (Ours) 83.11 92.32 76.31 67.50 76.79 57.85 84.82 78.93 71.64

KIR = 50%

CDAC+ 69.02 86.18 54.15 53.34 71.53 40.42 76.30 76.18 41.92

DeepAligned 80.22 91.63 72.34 59.23 76.52 47.82 72.89 74.49 57.96

DSSCCBERT 81.46 91.39 73.48 63.08 77.60 50.64 - - -

DSSCCSBERT 83.49 92.78 76.80 69.38 82.68 58.95 82.43 77.30 68.94

INTENDD (Ours) 84.57 93.91 78.42 71.16 84.56 63.17 85.01 79.14 72.49

KIR = 75%

CDAC+ 69.89 86.65 54.33 53.83 72.25 40.97 75.34 76.68 43.97

DeepAligned 86.01 94.03 79.82 64.90 79.56 53.64 74.51 76.24 59.45

DSSCCBERT 87.91 93.87 81.09 69.82 81.24 58.09 - - -

DSSCCSBERT 88.47 94.50 82.40 75.15 85.04 64.83 82.65 77.08 68.67

INTENDD (Ours) 90.99 96.29 83.62 77.08 87.39 68.69 85.47 77.12 72.90

Table 1: Results for Intent Discovery. First set of results are in a completely unsupervised setting, while others

are when some of the intent categories are known. KIR is used to represent the Known Intent Ratio. In all the

experiments involving known intents classes, we assume the proportion of labeled examples to be 10% (Kumar

et al., 2022). Baseline results are taken from Kumar et al. (2022) and those marked with - have not been reported in

literature. DSSCC paper does not report results for DSSCCBERT on Stack Overow, and we could not get access

their code to independently run that model. The best results for each dataset and setting are marked in bold. We

note that our proposed method consistently outperform recent baselines by a signicant margin.

Method BANKING77 HWU64 CLINC150

5 10 Full 5 10 Full 5 10 Full

RoBERTa 74.65 84.67 93.08 76.75 83.42 90.97 88.27 91.21 96.46

CONVBERT - 83.63 92.95 - 83.77 90.43 - 92.10 97.07

+ MLM - 83.99 93.44 - 84.52 92.38 - 92.75 97.11

+ MLM + Example - 84.09 94.06 - 83.44 92.47 - 92.35 97.11

+ Combined - 85.95 93.83 - 86.28 93.03 - 97.97 97.31

DNNC 80.40 86.71 - 80.46 84.72 - 91.02 93.76 -

CPFT 80.86 87.20 - 82.03 87.13 - 92.34 94.18 -

INTENDD-MLP (Ours) 82.17 88.70 93.63 81.27 85.32 92.89 91.34 93.66 96.92

INTENDD-EP (Ours) 83.25 88.96 94.18 83.17 86.35 93.31 92.70 92.24 97.93

INTENDD (Ours) 85.34 89.62 94.86 84.11 88.37 93.64 93.52 94.71 98.03

Table 2: Results for Multiclass Intent Detection. We report intent detection accuracy for three data settings. We

use the baseline numbers from (Lin et al., 2023). The best results for each dataset and setting are marked in bold.

Is Modied Adsorption important for Intent

Detection? INTENDD uses a pipeline of three

classication setups: one using the MLP, and two

in a transductive setting using the Modied Ad-



sorption (MAD). We perform ablation experiments

with these components and report results in the ta-

ble 2. We report results from three systems by

progressively adding one component at a time. IN-

TENDD-MLP denotes the results without using the

two steps of Modied Adsorption, INTENDD-EP

denotes the results with MAD but only the residual

propagation step (i.e. without the label smoothing).

We observe consistent performance improvements

due to each of the components of the pipeline. No-

tably, the label propagation step leads to more sig-

nicant improvements and these gains are not only

observed in the few-shot setups but also in the fully

data scenarios.

4.3 Multilabel Intent Detection

Datasets and Evaluation Metric. Follow-

ing Vulić et al. (2022), we use three datasets for

multilabel intent detection: BANKING77, Mix-

ATIS, and HOTELS subset is taken from NLU++

benchmark. MixATIS consists of a multilabel

dataset synthetically obtained via concatenating

single-label instances from the ATIS dataset. We

do not perform experiments with InsuranceFAQ

from that paper since it was an internal data.

We report standard evaluation metrics: F1 and

exact match accuracy (Acc). We report results

on all datasets in two settings: low-data, and

the high-data regimes, again replicating the

experimental settings from Vulić et al. (2022).

Baselines. Our main baseline is the MultiCon-

vFiT model proposed by Vulić et al. (2022) with

two variants. MultiConvFiT (FT) where full ne-

tuning along with the updating encoder parameters

is performed. The second, more efcient alterna-

tive MultiConvFiT (Ad) where an adapter is used

instead of updating all parameters. Along with this,

two other baselines from ConVFiT (Vulić et al.,

2021) are adapted –DRoB, and mini-LM. Please

refer to Vulić et al. (2022) for more details on these

methods.

Results. The results of our experiments are

shown in table 3. First, the results demonstrate

consistent gains achieved by our method across

all three datasets. Notably, in low-data scenarios,

we observe an average increase of approximately

1% in F-scores. As anticipated, the performance

enhancements are more substantial in low-data set-

tings. However, it is noteworthy that our model out-

performs MultiConVFiT even in high-data setup.

We nd the results of our base predictor and our

nal classier to be statistically signicant for all

the settings of multi-class and multi-label intent

detection using the t-test (p < 0.05).

5 Conclusion

In summary, this paper presents a novel approach,

INTENDD, for intent detection and discovery

in task-oriented dialogue systems. By leverag-

ing a shared utterance encoding backbone, IN-

TENDD unies intent classication and novel in-

tent discovery tasks. Through unsupervised con-

trastive learning, the proposed approach learns

representations by generating pseudo-labels based

on lexical features of unlabeled utterances. Ad-

ditionally, the paper introduces a two-step post-

processing setup using modied adsorption for clas-

sication tasks. While intent classication tasks

typically focus on contrastive representation learn-

ing or data augmentation, we show that a two-step

post-processing setup in a transductive setting leads

to statistically signicant improvements to our base

classier, often rivaling or at par with data aug-

mentation approaches. Extensive evaluations on

diverse benchmark datasets demonstrate the con-

sistent improvements achieved by our system over

competitive baselines.

6 Limitations

While our research provides valuable insights and

contributions, we acknowledge certain limitations

that should be considered. In this section, we dis-

cuss two main limitations that arise from our work.

First, a limitation of our proposed intent discov-

ery algorithm is its reliance on prior knowledge of

the number of intent clusters. This assumption may

not hold in real-world scenarios where the under-

lying intent structure is unknown or may change

dynamically. The requirement of knowing the ex-

act number of intent clusters can be impractical

and unrealistic, limiting the generalizability of our

approach. However, we recognize that this limi-

tation can be addressed through modications to

our algorithm. Future investigations should explore

techniques that allow for automated or adaptive de-

termination of the number of intent clusters, mak-

ing the approach more robust and applicable to

diverse real-world settings.

The second limitation of our research lies in the

reliance on the construction of a graph using ex-

tracted keyphrases during the contrastive pretrain-



Method BANKING77 HOTELS MIXATIS

low-data high-data low-data high-data low-data high-data

DRoB (Vulić et al., 2021) 70.6 / 31.0 86.7 / 60.0 65.3 / 46.8 80.9 / 65.1 58.5 / 21.2 78.4 / 46.9

mini-LM (Vulić et al., 2021) 70.8 / 31.2 86.7 / 58.1 64.2 / 46.0 80.3 / 65.8 58.1 / 22.0 78.6 / 47.5

MultiConvFiT (Ad) 80.7 / 47.9 93.7 / 77.2 67.3 / 47.6 92.8 / 84.9 73.7 / 44.6 90.8 / 78.3

MultiConvFiT (FT) 81.9 / 49.1 94.3 / 80.5 70.2 / 51.1 93.4 / 84.0 76.5 / 51.4 91.5 / 81.1

INTENDD(Ours) 82.4 / 49.7 94.8 / 80.9 71.5 / 51.8 93.7 / 84.3 77.6 / 51.9 91.9 / 81.5

Table 3: Results for Mult-label Intent Detection. We report both F1 score and Accuracy for all the settings. The

rst number in each cell is the F1 score and the second number is the accuracy. Vulić et al. (2022) proposed

two variants for MultiConvFiT - one with full ne-tuning (FT) and another with adapters (Ad). The ConvFiT

model proposed by Vulić et al. (2021) has been adapted for multi-label settings with DistilRoBERTa (DRoB), and

mini-LM as backbones. The best results for each dataset and setting are marked in bold. To establish the statistical

signicance of our results, we performed the paired t-test between INTENDD and MultiConvFiT (FT) and found the

p-value in all cases to be < 0.05.

ing step, which is a common requirement across

all three tasks explored in our study. While this

graph construction step facilitates the representa-

tion learning process, it introduces a constraint

on the exibility of modifying the graph structure.

Even a minor modication to the graph construc-

tion would necessitate retraining all systems, which

can be time-consuming and resource-intensive.

Currently, we mitigate the need for covering new ut-

terances (with no overlapping keyphrases) by sim-

ply relying on similarity from the encoder represen-

tation itself. However, it still may still lead to con-

cept drift over time, and the representation might

need to be updated by retraining all the modules

in INTENDD. In future work, we intend to explore

alternative approaches that offer more exibility in

graph construction, allowing for easier modica-

tions without the need for extensive retraining. By

addressing this limitation, we aim to enhance the

adaptability and scalability of our framework.
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intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language

Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Inigo Casanueva, Ivan Vulić, Georgios Spithourakis,
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HWU64 10,030 64 MC
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MIXATIS 20,000 18 ML
STACK OVERFLOW 20,000 20 ID

Table 4: Dataset Statistics for the three Intent Identi-

cation tasks explored in this work. Second column lists
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MC - Multiclass (Single label), ML - Multi-label, ID -
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A Experimental Details

A.1 Baseline Description

Intent Discovery In the unsupervised setting, the

rst two baselines use K-means algorithm (Mac-

Queen, 1967) on top of sentence embeddings from

BERT (Devlin et al., 2019) and SBERT (Reimers

and Gurevych, 2019) to cluster user utter-

ances (BERT-KM, SBERT-KM respectively).

DEC (Xie et al., 2016) is a two step deep clustering

approach involving a Stacked Autoencoder (SAE)

along with condence based cluster assignment.

SAE-KM uses K-means with SAE (Xie et al.,

2016), DCN (Yang et al., 2017) is a method that

performs dimensionality reduction and clustering

using a joint objective function, and DAC (Chang

et al., 2017) treats the clustering problem as a pair-

wise binary classication problem to learn cluster

centers.

For the semi-supervised case, we use

CDAC+ (Lin et al., 2020), in which the

pairwise constraints from the labeled examples

are incorporated into the clustering problem.

DeepAligned (Zhang et al., 2021b) uses labeled

data to generated pseudo labels as well as pretrain

a BERT model followed by K-means clustering.

Finally, we compare our method with a very

recent method DSCC (Kumar et al., 2022) where

the authors propose an end-to-end contrastive

clustering algorithm to jointly learn cluster centers

and utterance representations via a combination

of supervised and self-supervised methods. We

report results with two backbone models used in

the paper, BERT and S-BERT.

Multiclass Intent Detection In this study, we

consider several baseline models for intent de-

tection. The rst baseline, RoBERTa-base, uti-

lizes RoBERTa as its base model, supplemented

with a linear classier on top for classica-

tion purposes. Another baseline, CONVBERT,

involves ne-tuning BERT using a vast open-

domain dialogue corpus consisting of 700 mil-

lion conversations (Mehri et al., 2020). Fur-

thermore, CONVBERT + Combined, an intent

detection model based on CONVBERT, adopts

example-driven training with similarity match-

ing and transformer attention observers, along

with task-adaptive self-supervised learning using

masked language modeling on intent detection

datasets. The term "Combined" refers to the opti-

mal MLM+Example+Observers setting described

in Mehri and Eric (2021). Another baseline model,

DNNC (Discriminative Nearest-Neighbor Classi-

cation) (Zhang et al., 2020), employs a discrimina-

tive nearest-neighbor approach, matching training

examples based on similarity and employing data

augmentation during training. Additionally, it en-

hances performance through pre-training on three

natural language inference tasks. Finally, CPFT

(Contrastive Pre-training and Fine-Tuning) (Zhang

et al., 2021c) represents the current state-of-the-

art in few-shot intent detection, employing self-

supervised contrastive pre-training on multiple in-

tent detection datasets, followed by ne-tuning us-

ing supervised contrastive learning.

B Additional Results

Variance in Few-shot Intent Detection. In the

few-shot settings, we generally report lower vari-

ance than CPFT, the system with the second-best

results consistently. Table 5 shows the standard

deviation for INTENDD and CFPT, where CPFT



IntenDD CPFT

5 10 5 10

BANKING77 0.38 0.29 0.20 0.48

HWU 0.35 0.18 0.51 0.25

CLINC150 0.32 0.21 0.39 0.18

Table 5: Standard Deviation across different runs for

Few-Shot Intent Detection. We observe that, compared

to CPFT, our method has lower variance across most

settings.

has a lower variance than INTENDDonly in two

out of six settings.

B.1 Comparisong with a recent data

augmentation strategy - ICDA

INTENDD currently does not incorporate any aug-

mented data in its experimental setup. We do not

compare our work with data augmentation methods

as they are orthogonal to ours. One such example

is that of ICDA (Lin et al., 2023), where a large

language model (OPT-66B) (Zhang et al., 2022) is

used to augment the intent detection datasets for

few-shot data settings. Nevertheless, we nd that

our method performs better than ICDA.

INTENDD outperforms all the settings of ICDA

in both 5-shot and Full data settings. In 10-shot

settings, while INTENDDreports the best results

on HWU64, the largest congurations of ICDA re-

ports a better accuracy for the other two datasets.

The largest conguration uses 128 times more aug-

mented data than the available supervised data to

report the best results. Overall, ICDA reports an

accuracy of 89.79 % and 94.84 % on BANKING77

and CLINC150 respectively which is 0.17 % and

0.13 % more than INTENDD.

B.2 Computing Infrastructure Used

All of our experiments required access to GPU

accelerators. We ran our experiments on three ma-

chines: Nvidia Tesla A100 (80 GB VRAM), Nvidia

Tesla V100 (16 GB VRAM), Tesla A100 (40 GB

VRAM).


